Administrative Countermeasures in Japan for Infrasound-related Problems

Mitsuyasu Yamashita and Hiroaki Ochiai KOBAYASI INSTITUE OF PHYSICAL RESEARCH, Tokyo, Japan Hiroaki Takinami, RION CO., LTD. Tokyo, Japan

Abstract:

The paper describes the updated situation in Japan regarding the following infrasound-related issues.

- Occurrences and complaints
- Measurement methods and devices on ISO 7196
- Latest issued-guidelines by the Ministry of the Environment for local
- governments' countermeasures

Minute changes in pressure occurring in the atmosphere are picked up by the human ear and perceived as sound. This is called auditory perception. There are various causes for these changes in pressure which are transmitted in the atmosphere. Since the way these fluctuations spread resembles the propagation of a wave on the surface of water, the phenomenon is commonly referred to as "sound waves". Some sound waves can be likened to a slow swell, while others are more like tiny ripples. Not all of these waves are heard by humans as sound. The range of human hearing is usually considered to extend from about 20 Hz to 20,000 Hz. The present study concerns itself mainly with very low frequencies under 20 Hz, a range also called "infrasound". When examining the low frequency range with a view to environmental impact, the frequency range from 1 - 80 Hz is usually considered.

In so far as vibrations are being transmitted in the atmosphere, low-frequency noise is no different from other kinds of noise. But the fact that the frequency of such noise is extremely low makes for some peculiarities. Low-frequency noise as an environmental problem usually has two aspects. One is complaints about direct auditory perception of the vibrations as noise, and the other is complaints caused by indirect perception, such as by rattling windows, doors, and other fixtures.

(1) Sources and complaints

Table 1 shows a chronology of low-frequency sound related events and problems

Table 1

Year	Event	Remarks
1883	Observation of pressure wave caused by Krakatau volcano	London, Tokyo
	eruption	Meteorological
		Observatory
1906	Design proposal for a tasimeter using flame	Shaw, W.N & Dines,
		W.H.
1908	Observation of infrasound caused by meteor impact in Siberia	
approx.	Determination of enemy gun position by observation of shelling	
1910	sound	
1913	Study of explosive sound of Mt. Asama eruption	
1921	Development of hot-wire microphone for gun position detection	Tucker, W.S. & Paris,
		E.T.
1937	Electromagnetic tasimeter developed	Benioff, H. &
		Gutenberg, B.
1941	Demonstration of principle and experiment for sound source	Bragg, W.
	location by shelling sound	
1952	Analysis of generation mechanism, acoustic energy, and	Daniels, F.B.
	propagation of infrasound	
1956	Observation of explosive sound of Bezymianny volcano	In Russia, England,
	eruption	and at Kushiro
1956	Invention of wind noise reduction pipe for strong winds	Daniels, F.B.
1957	Recording of infrasound during large rocket launch	Kaschak et al
1958	Observation of explosive sound of Mt. Asama eruption	Recorded by
		tasimeters at various
		locations in Japan
1961	Development of measurement system for sonic boom caused by	Taniguchi, H. H.
1062	Supersonic aircraft	Cook P K
1902	Keview of infrasound caused by sea waves	C00K, K. K.
1962	Measurement of infrasound caused by magnetic storms and	Cook, R. K.
	tornadoes	
1963	Estimation of infrasound absorption factor	Cook, R. K.
1964	Development of Solion microphone	Collins, J.L. et al
1965	Clarification of generation and propagation of earthquake	Cook, R. K.
	induced infrasound	
1966	Demonstration of sensing flame for visual observation of	Gavreau, V. et al
	infrasound	

1966	Development of tasimeter for shelling sound measurement	Gavreau, V. et al		
1966	Identification of problems with sonic boom measurement technology	Hilton, D.A. & Newman, J.W.		
1967	Development of multi-element sensor array for measurement of infrasound caused by nuclear explosion	Fehr, U.		
1969	Measurement of low frequency sound emitted by diesel-type electric power generating plants	Kono et al		
1969	Development of piezoelectric low frequency microphone	Tokita, Shimizu		
1969	Occurrence of minute vibrations of unknown origin	Jushiyamamura, Ama-gun, Aichi prefecture		
1970	Measurement of low frequency sound emitted by large diesel engines using a pressure transducer	Nakano, Ikegami		
1970	Development of low frequency microphone using gauge as pressure transducer	Nishiwaki, Mori		
1971	Demonstration of measurement system for infrasound	Hood, R.A. & Levebthall, H.G.		
1971	Analysis of wind influence on propagation of infrasound emitted by rockets	Balanchandran, N.K. et al		
1971	Study of infrasound at Tappan Zee bridge on Hudson river	Donn, L.W. et al		
1973	Market introduction of low frequency microphone	RION		
1975	Measurement example of infrasound in vicinity of Saturn V	Malecki		
1975	Complaints about micro pressure waves produced when Shinkansen trains enter a tunnel	Sanyo Shinkansen		
1976	Environment Agency conducts nation-wide survey of low frequency sound			
1976	Suicide because of infrasound problems	Chuo Expressway, Achigawa bridge		
1976	Study of low frequency sound and building vibrations caused by road bridges	Shimizu et al		
1976	Study of low frequency sound caused by discharge of sand guard dam	Gifu prefecture		
1976	Study of low frequency sound and its propagation caused by	Kanazawa et al		
1770	discharge of dams			
1977	discharge of damsStudy of secondary sound caused by fixture vibrations due to low frequency sound	Kobayasi Institute of Physical Research		

	elevated bridges		
1977	Development of low frequency sound phase-contrast detector	Nishiwaki	
1978	Measurement of infrasound in high-rise buildings during rainstorms	Bruel, P.V.	
1978	Proposal of a low frequency sound measurement standard (G1, G2 characteristics)	Bruel, P.V.	
1980	Observation of explosive sound of Mount St Helens eruption	Registered worldwide	
1980	Development of simple measurement system for propagation of low frequency sound	Fukuhara, Okuma	
1980	Proposal of G1, G2 characteristics as ISO standard for low frequency sound measurement	Bruel, P.V.	
1983	Development of low frequency sound source detector based on acoustic intensity method	RION	
1983	Measurement of infrasound produced by wind turbine generator systems	Hubbard, H.H. et al	
1984	Observation of infrasound caused by typhoons	Yang, X. & Xie, J.	
1984	Study of infrasound generated by experimental wind turbine installation on Miyake island	Inoue et al	
1985	Development of low frequency sound source detection system using cross spectrum method	Akamatsu et al	
1985	Occurrence of building vibrations caused by discharge of Reno river in Italy	Bragadin, G.L. et al	
1986	Recording of infrasound caused by Mt. Mihara eruption using a level recorder	Institute of Noise Control Engineering, Japan	
1986	Clarification of nuclear explosion infrasound waveform	Zie, J. & Wang, J.	
1986	Observation of infrasound associated with Challenger explosion	Yang, X. et al	
1987	Observation of infrasound associated with annular eclipse	Yang, X. & Xie, J.	
1991	Proposal for a measurement method of low frequency sound and infrasound	Institute of Noise Control Engineering, Japan, Subcommittee for Low Frequency Sound	
1993	Increased complaints about micro pressure waves associated with increased train speed	Sanyo Shinkansen	
1995	Infrasound measurement standard ISO 7196 stipulated		

2000	Environment Agency publishes measurement manual for low	
	frequency sound	
2002	Ministry of Environment provides sound pressure level meters	
	for measurement of low frequency sound to municipalities	
2003	Ministry of Environment publishes countermeasure example	
	compendium	
	Guidelines regarding low frequency sound are under	
	consideration	

(2) ISO 7196 measurement method and measurement equipment

The standard defines the various specifications relating to equipment used for measuring low frequency sound. It includes detailed calibration specifications for microphone, voltage amplification, meter indication, and other aspects.

An important point is that the standard defines the frequency weighting characteristics (G characteristics) for measuring and evaluating low frequency sound.

(3) Latest guidelines issued by Ministry of Environment to local authorities

In August 2002, the Ministry of Environment established a "Low Frequency Sound Countermeasure Committee" at the Institute of Noise Control Engineering, Japan. The committee considered topics such as a manual and evaluation guidelines and issued a "Manual for Low Frequency Sound Countermeasures". This document was compiled with the intention of assisting local authorities in dealing with problems related to low frequency sound. It covers basic processes from handling claims to analyzing and solving problems. The manual also outlines methods and points to be considered and provides technical background on relevant issues.

Local administrative personnel in charge of dealing with low frequency sound problems and other environmental complaints are expected to refer to the manual when attempting to find solutions. The manual comes with the proviso that it is to be considered as a reference, not as a strict set of rules. It clearly states that local authorities will have to adapt their countermeasures to the respective conditions.

Because the manual has been prepared using data that were current at the time of compilation, it is to be hoped that feedback from the communities will be evaluated and incorporated in future versions, to improve efficiency and widen the scope of solutions that are covered.

中華民國音響學會 第17屆學術研討會論文集 臺灣、高雄縣 高苑技術學院 中華民國九十三年十一月十九日

An example of measuring equipment currently used in Japan for low frequency sound level measurements is appended.

G-weighting and 1/3 Octave Real-Time Analysis

Infrasound Level Meter **NA-18** 1/3 Octave Band Analyzer **NA-18**

Outline

Infrasound Level Meter NA-18 1/3 Octave Band Analyzer

Low-frequency air vibrations including infrasonic noise are sound pressure changes at frequencies that are too low to be directly audible to the human ear. However, such vibrations can cause windows and other parts of buildings to resonate. The vibrations also can have various physiological effects, such as provoking tinnitus (ringing in the ears), headache or discomfort, as well as causing increased pulse or blood pressure. The NA-18 is a low frequency sound level meter designed for use in environmental evaluations aimed at identifying infrasonic noise. It has various specialized features including G-frequency weighting.

- G-frequency weighting
- 1/3 octave real time analyzer
- Frequency range extends from 1 to 1000 Hz
- Sophisticated digital signal processing
- 192 × 192 dot LCD with LED backlighting
- Integrated memory holds up to 6000 data with auto- store function

Graphical display of 1/3 octave analysis

G-weighting shown in ISO 7196, 1995

Specifications

Applicable standards	ISO 7196 : 1995	Memory function				
	JIS C 1513 : 1983 Type I	Manual store	Storing of displayed measurement results in interr			mory.
	IEC 61260 : 1995 Class 1		Max. 20	0 data.		
Measurement functions	G-weighted sound pressure level	Auto store	Continue	ous storing of measurement	results in internal m	emory.
	Real-time 1/3-octave analysis in 1 - 80 Hz range		Max. 60	00 data.		
Processing functions	Instantaneous value Lp	Level trigger function	Process	ing starts when preset level i	s exceeded.	
	Equivalent continuous sound pressure level Leg	Dispłay	Backlit L	.CD, 192 × 192 dots		
	Maximum sound pressure level Lmax		G weigh	ting sound pressure level me	ter display	
	Waveform peak hold Lpeak		(numerio	c and bar graph)		
Measurement time	10 seconds, 1, 5, 10, 15, 30, 60 minutes,		1/3 octa	ve analysis display (numeric	and bar graph)	
	Free (manual measurement stop; up to 8 hours)		Level-tir	ne Indication, Battery warnin	j indication	
Microphone	UC-24 (ceramic microphone with integrated preamplifier)	Inputs and outputs	External	power supply input, AC out	out, DC output,	
Measurement range	G weighting: 50 - 147 dB (in 110 - 140 dB range overload 3 dB)		Serial I/	O connector, Infrared port		
	Flat: 53 - 147 dB (in 110 - 140 dB range overload 3 dB)	Interface	RS-232-	c		
Noise floor	G weighting: Less than 40 dB	Power requirements	Four IEC	C R14 (size "C") batteries or	external AC adapter	r NC-94
	Flat: Less than 48 dB	Operation time on batte	ries			
Level range			6 hours	(alkaline batteries, at 25°C)		
G weighting sound level	meter mode (display range 60 dB)		2.5 hour	s (manganese batteries, at 2	:5°C)	
	50 - 90 dB (5 ranges, 10-dB step)	Current consumption	360 mA	(at 20°C, external power sup	ply input voltage 5 '	V)
Frequency analysis mod	ie (display range 70 dB)	Ambient conditions for a	peration			
	40 - 80 dB (5 ranges, 10-dB step)		-10 to -	+50°C, 30 to 90% RH (no co	ndensation)	
Overload characteristics Measurement frequency	Display full-scale point +3 dB r range	Dimensions and weight Supplied accessories	319 × 1	00 × 50 mm, Approx. 630 g	(without batteries)	
	1 - 1000 Hz (1/3 octave analysis frequency range 1 - 80 Hz)	Storage case	×1	Soft case	X1	
	0.2 - 1000 Hz (amplifier only)	Tripod adapter	X1	Windscreen	×1	
Frequency weighting	G-weighting (digital) and flat weighting (analog)	BNC-to-PIN cable	X1	Miniature screwdriver	×1	
RMS detection	Digital true rms detection (digital)	Size "C" batteries	× 4	Hand strap	×1	
Time constant	Fast (125 ms), Slow (1 s), 10 s, Peakhold	Instruction Manual	XI	Lithium battery	× 1	
Calibration	Electrical calibration with 250-Hz sine wave signal from built-in					
	oscillator					

Specifications subject to change without notice

20-41, Higashimotomachi 3-chome, Kokubunji, Tokyo 185-8533, Japan Telephone: +81-42-359-7888 Fax: +81-42-359-7442 URL: http://www.rion.co.jp

Netvikuted bu		
Istributed by:		

Printed in Japan '99. 12. 3KF