
中華民國音響學會                               臺灣‧高雄縣    高苑技術學院 
第十七屆學術研討會論文集                       中華民國九十三年十一月十九日 
 

Neural Network Control on the Acoustic Field in a Duct 
 

Kuo-tsai Chen, Bore-chien Tsai, Sue-min Huang, Jean-Hong Chou, Su-Hua Chang 

Department of Engineering Science and Ocean Engineering, National Taiwan University 

1 sect.4 Roosevelt Rd., Taipei, R.O.C. in Taiwan  
E-mail: ktchen@ccms.ntu.edu.tw 

 
ABSTRACT 

This paper is a new try to the study on the active noise control in duct by 
combining a control theory with an artificial-intelligence neural network (AINN). 

The convergence of acoustic field being actively controlled in duct by computer 
simulation is firstly investigated. Using the result as obtained can obtain the optimum 
parameter of the artificial neural network used for the required experiment. 

In experiment, two setups are adopted. The first one takes the signals directly from 
the function generator as the reference input of the control system. The result reveals 
the attenuation by more than 25 and 20 dB in residual acoustic pressure and its 
associated power for pure- and dual-tone sounds. The second one places the reference 
microphone in a passive device to directly measure the signal downstream the primary 
source. The device as above mainly alleviates the influence of the acoustic feedback 
produced by the secondary source on the input microphone. Its experimental result 
shows the reduction by more than 30 or 20 dB for the same acoustic quantities as that 
of the first one. 
 

INTRODUCTION 
Regarding the noise control in the application of acoustics, it is from past studies1-8 

to show that the active control technique can provide better effectiveness than the 
passive one at lower frequency. Specially speaking to the active control of sound 
propagation in duct, the past studies involved 2-9 revealed that the combination of 
either an adaptive or a robust control with some appropriate algorithms was usually 
used for getting better control effectiveness. 

In recent years, the theory and applications of neural networks10-20 for various kinds 
of fields, which include industrial control systems, artificial intelligence in 
engineering design, and economics and management science, etc., are, respectively, 
developed. Taking the application of neutral network control to duct acoustics into 
consideration, Chou21 started the study involved in his master thesis. In this paper, it 
intends to study the active noise control in duct by combining a control theory with an 
artificial-intelligence neural network (AINN). The contents of study include the 
determination of optimum parameters for the artificial neural network to be used and 
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the required experiment. From the experimental result as obtained, it shows the two 
frameworks adopted for reducing acoustic feedback provide almost the same 
attenuation of at least 20 decibels in acoustic downstream power.  

 
THEORETICAL BACKGROUND 

 
 

    From the text of acoustics1, the acoustic pressure generated by a point source in a 
duct of diameter smaller than that for cutoff frequency1 must be of plane wave type, 
and can be expressed in terms of either a forward or a backward going plane wave 
fields as:  
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Whereρo, co are, respectively, the density of ambient air and the speed of sound 
propagating through it. xo is the position where the point source locates, q is its source 
strength, and S is the cross-sectional area of the duct to be adopted. When a primary 
source of strength qp and a secondary source of strength qs are placed at x = 0 and x = 
l, respectively. The resulting acoustic pressure is: 
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As shown in Fig.1, when the strength of the two sources has the relationship of  

jkl
ps eqq −−= , the acoustic field downstream the secondary source must be a silence 

zone. Using the Fourier transform in real-time domain on the strength relationship as 
above between two sources can obtain: 
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In order to eliminate the acoustic pressure downstream the secondary source, eqn(3) 

tells us that the secondary source must be the same strength but 
oc

l time delay as 

that of the primary source. Regarding the acoustic field upstream the secondary source, 
should be an acoustic feedback field to the primary source. In order to greatly reduce 
the inefficient influence of acoustic feedback as described to the control effectiveness, 
two specially designed frameworks of passive type are used for the experiment 
required for this study.  
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  From the text of neutral network10, and some past studies9-20, the neutral network 
has some special properties such as non-linearity, adaptivity, learning, memory and 
fault tolerance are included. Following Chou’s thesis21, this study adopts the back- 
propagation neutral network and its associated error algorithm as the required ones. 
Figs.2 shows the description to the back- propagation neutral network to be adopted. 
By the similar manner of derivation as that of Chou’s study21, the output uj of j-th 
neuron in the output layer as shown in Fig.2 can be expressed as: 

        ( )jj netfu =                                           (4)  

In eqn(4), f is the activation function of neuron, which is a hyperbolic function in 

this study, ( )∑ +=
h

jhhjj hidwnet θ. is the input of j-th neuron, andhjw jθ are the 

associated weighting parameter and bias. Furthermore, ( )hh netfhid =  is the output 

of the h-th neuron, is its corresponding input, and ,( )∑ +=
h

hiihh xwnet θ. ihw jθ are the 

associated weighting parameter and bias. Generally, the real output uj of a neutral 
network is always not coincident with its desired output tj, the error function E 
between them can be defined as: 

                 (∑ −=
j

jj utE 2

2
1 )                                   (5) 

Using the steepest gradient method for the error back-propagation algorithm to 
minimize eqn(5), and after some complicate manipulations, either the modified 
weighting coefficients or the associated bias at any instant (t+1) from the h-th neuron 
in hidden layer to the j-th neuron in the output layer can be expressed in terms of 
those one at earlier time t as :  

( ) ( ) hjhjhj hidtwtw ηδ+=+1                         (6)  

( ) ( ) xtwtw hihih ηδ+=+1                           (7)  

( ) ( ) jjj tt ηδθθ −=+1                              (8) 

( ) ( ) hhh tt ηδθθ −=+1                              (9)  

ηis the learning rate of the neural network, ( )( )( )hjhjhjhjhj uuut ,,,,, 11 −+−=δ . 

To get better control effectiveness, a framework for special learning, which is shown 
in Fig.3, can on-line and in real time modify the weighting coefficients of the adopted 
back-propagation neutral network. Upon the discussion as above, we can apply the 
back-propagation neutral network with special learning framework to the active noise 
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control in duct. Fig.4 shows the corresponding sketch.   

 
EXPERIMENT and RESULTS 

This study is a new try to combine a back-propagation neutral network with its 
associated error algorithm for the active acoustic control in a duct. Fig.5 shows the 
corresponding setup for the active-neutral network control experiment. In order to 
eliminate the influence by the acoustic feedback from the secondary source on the 
reference microphone downstream the primary source, a passive device, also shown in 
Fig.5, is adopted. The equipments involved in Fig.5 are all the same as that for Chou’s 
study21, the illustration for them in detail are not discussed in this paper. After some 
trial and error for pure-tone sound, it is decisively to select the optimum values of 

learning rate 01.0=η , of initial weighting coefficient ( ) ( )00 ihhj ww =  , of 

initial bias 

01.0=

( ) ( ) 01.000 == hj θθ , and of the respective amount ,6=i 6,3 == jh  of 

neurons, in input, hidden and output layers for the neutral network control system 
adopted in experiment. Upon the equipment arrangement as shown in Fig.5, we can 
measure both the residual acoustic pressure and associated power downstream the 
secondary source when the experiment is making in progress at ten frequencies from 
100 to 900 Hz. The corresponding attenuation at ten frequencies as measured are 57.4, 
52.7, 54.9, 47.2, 46.5, 40.6, 40.8, 43.4, 47.6, 44.8, 36.8, 38.1 dB in residual pressure, 
and 40, 48, 46.5, 41.6, 44.5 33.0, 43.1, 34.5, 41.7, 37.5, 30.9, 35.9 dB in residual 
power. Figs. 6,7, respectively, show the residual acoustic pressures before and after 
active control at 100 and 800 Hz. Otherwise for dual-tone sound case, changing the 
respective amount of neurons, in input, hidden and output layers of the adopted 
back-propagation neutral network to be ,15=i  15=h  15, =j for getting better 
control effectiveness, and keeping the remaining unchanged, can make the experiment 
in progress at four dual- tone frequencies of 300-315, 300-350, 360-400, and 450-550 
Hz. The attenuation of residual acoustic pressure at the above four frequencies are 
19.6, 23.7, 27.4, and 27.7 dB.  
 

CONCLUSIONS 
From the results as measured in experiment for pure-tone sound, the back- 

propagation neutral network system with optimum parameters and an appropriate 
amounts of neurons for the active control of sound transmission in duct can provide 
attenuation of both residual acoustic pressure and the associated power by more than 
50, 40 dB at low frequency and 37, 30dB at higher frequency. Regarding the dual-tone 
sound, optimum parameters of the system involved are still the same, but must change 
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the amount of neuron to be more. The attenuation in residual pressure has the greatest 
value of 27.7 dB at the highest dual-tone of 450-550 Hz, and lowest value of 19.6 dB 
at the lowest dual-tone of 300-315 Hz.  

 
                    ILLUSTRATIONS 
 

 
 

Fig.1 The acoustic interference between the fields produced by a primary and a 
secondary sources. 
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Fig. 2 Block diagram for an Error Back-propagation Neural Network  
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 Fig.3 The block diagram of a special learning framework 
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Fig.4 The sketch of a back-propagation neutral network with special learning  
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Fig.5 Setup of all equipments in the neutral network control experiment. 
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Fig. 6 The residual sound pressures at 100Hz before and after active control. 
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Fig.7 The residual sound pressures at 800Hz before and after active control. 
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